ZETA FUNCTIONS FOR ONE-DIMENSIONAL GENERALIZED SOLENOIDS
نویسندگان
چکیده
منابع مشابه
K-theory of C-algebras from One-dimensional Generalized Solenoids
We compute the K-groups of C-algebras arising from one-dimensional generalized solenoids. The results show that Ruelle algebras from one-dimensional generalized solenoids are one-dimensional generalizations of Cuntz-Krieger algebras.
متن کاملMultifractal and higher dimensional zeta functions
In this paper, we generalize the zeta function for a fractal string (as in [18]) in several directions. We first modify the zeta function to be associated with a sequence of covers instead of the usual definition involving gap lengths. This modified zeta function allows us to define both a multifractal zeta function and a zeta function for higher-dimensional fractal sets. In the multifractal ca...
متن کاملZeta Functions for Elements of Entropy Rank One Actions
An algebraic Z-action of entropy rank one is one for which each element has finite entropy. Using the structure theory of these actions due to Einsiedler and Lind, this paper investigates dynamical zeta functions for elements of the action. An explicit periodic point formula is obtained leading to a uniform parameterization of the zeta functions that arise in expansive components of an expansiv...
متن کاملGeneralized Zeta Functions and One-loop Corrections to Quantum Kink Masses
A method for describing the quantum kink states in the semi-classical limit of several (1+1)-dimensional field theoretical models is developed. We use the generalized zeta function regularization method to compute the one-loop quantum correction to the masses of the kink in the sine-Gordon and cubic sinh-Gordon models and another two P(φ)2 systems with polynomial self-interactions.
متن کاملZeta functions for two-dimensional shifts of finite type
This work is concerned with zeta functions of two-dimensional shifts of finite type. A two-dimensional zeta function ζ0(s) which generalizes the Artin-Mazur zeta function was given by Lind for Z2-action φ. The n-th order zeta function ζn of φ on Zn×∞, n ≥ 1, is studied first. The trace operator Tn which is the transition matrix for x-periodic patterns of period n with height 2 is rotationally s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Pure and Applied Mathematics
سال: 2011
ISSN: 1226-0657
DOI: 10.7468/jksmeb.2011.18.2.141